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Abstract 

The use of projective geometry for the characterization of Lagrangian subspaces and maps 
among them is of particular interest for the symplectic manifold that is twistor space. We 
raise some conjectures on how these should be interpreted on the space-time manifold by 
making use of the structure of projective twistor space. 

1. Introduction 

A previous paper (Campbell and Dodson, 1979) discussed the use of pro- 
jective geometry for characterizing the Lagrangian subspaces defined by real 
polarizations of R 2n and, in addition, maps among them. The central results 
contained there will be applicable to a symplectic manifold which is C 2n since 
these results stem from theorems of projective geometry which are valid for 
general vector spaces. 

In particular, it is interesting to consider the implications of projective geo- 
metrical concepts for polarizations of twistor space (Penrose, 1975) which is 
C 4. With the convention (Morrow and Kodaira, 1971) that T(M) is the canoni- 
cally defined holomorphie tangent bundle of a complex manifold M. we have 
the following 

Definition 1. A polarization, F, of a smooth 2n-dimensional symplectic 
complex manifold (M, 6o) is a smooth distribution 

F: M-+ T(M) : m ~--~ Fm 

such that,Vm E M, 
(i) Fm is an n-dimensional subspace of the complex vector space TraM with 
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the property that it is maximally isotropic, 

Fm x Fm ~ ker 

Fm is then a Lagrangian subspace of TmM. 
(ii) F is involutive; its vector fields form a Lie subalgebra. We can similarly 

define the conjugate polarization f f to  be a smooth distribution 

if:M-> T(M) 

where now T(M) is the conjugate tangent bundle of M. 

Remarks 
(i) Simms and Woodhouse (1976) describe the use of polarizations derived 

from the complexification of bundles over real symplectic manifolds in geo- 
metric quantization. 

(ii) Tarski (1976)has claimed that elementary particle resonance states for 
higher spin are suitably defined by certain polarizations of the underlying phase 
space. 

Campbell 

2. Projective Geometry and Polarizations of Twistor Space 

For our purposes it is more natural to use the above definition of polariza- 
tion. We take as our symplectic manifold (C 2n, co), where w is, for example, 

2n 2n the standard symplectic structure on C . Then, the subspaces Fm C TmC 
are essentially (n - 1)-dimensional hyperplanes in the projective space CP 2n - l 
of TrnC 2n. Indeed, the maximal isotropy property of these subspaces is 
characterized in the projective space by the action of the corresponding symp- 
lectic correlatfon r~. If ~ is any symplectic structure on C 2n then by Theorems 
1,2 (Campbell and Dodson, 1976) it defines a symplectic correlation rg on 
c /~n - 1 by 

~ ( p w )  = (v l~(v ,  w) = 0, V w e  w) 

for proper subspaces W C C 2n. [We conform to the notation of Penrose (1975) 
by adopting the prefix P for a projective space and a symbol like v for its pro- 
jective points.] 

Proposition 1. A subspace Fm C Tm C. 2n is maximally isotropic if and 
only if PFm ~- ~ (PFm). 

Proof By definition, an n-dimensional subspace Fm C Tm C 2n is maximally 
isotropic if ~o(v, w) = 0, Vv, w E Fro. Thus 

PFm ~- ~ (PFm) 
t 

Also 

PFm C- r = (v l~(v ,w)=O,  VwCFm} ~ ~(v, w)=O, Vv, w E F  m 

so F m is maximally isotropic. [] 
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So those Lagrangian subspaces determined by a polarization F of a symp- 
lectic manifold (C 2n, co) can now be realized projectively as (n - 1)-dimen- 
sional hyperplanes PFm in each projective space PTmC ~m. They have the 
defining property PF m ~- rg (PFm), where rg is the symplectic correlation on 
PTrnC 2n defined by the symplectic structure on C 2n. 

Example. Flat twistor space, ~, is C 4 with symplectic structure idZ '~ A dZ,~, 
= 0 . . . .  ,3;  Z a being a twistor, an object that is decomposable into spinor 

parts describing the momentum and angular momentum structure of a zero- 
rest-mass particle. Projective "twistor space, PT, is justlC~ ~ and is constructed 
from points Z which are the equivalence classes of twistors obtained by multi- 
plying given nonzero twistors Z ~ by all nonzero complex numbers. 

By the above, a polarization F of T assigns to each Z a E 1]- a complex 
projective line PFza in the projective space PTz~T. Each such line has the 
property IPFz a c_ cg(pFz~), where the symplectic correlation cg on PTzC~7 is 
defined by the symplectic structure of T. More precisely, we have the follow- 
ing. 

Lemma. 

pFza  = (g(pFz~) 

Proof. This follows from the dimension theorem for a correlation of a 
projective space (Yale, 1968, p. 258), since by this theorem c~(PFza) will also 
be a complex projective line. [] 

3. Projective Twistor Space and Minkowski Space-Time 

The projective ideas of Section 2 are particularly appropriate in twistor 
theory. To see this we must make use of  the structure of PT and its relation- 
ship with compactified Minkowski space-time M. Penrose (1967)has described 
this structure. In this section we shall summarize the main ideas after first giving 
some precise definitions, which make use of some previous results (Campbel 
and Dodson, 1976; Yale, 1968) concerning correlations of  a projective space. 

Definition 2. The Hermitian form on l]- is a map 

h : T x T  -~ C : ( X~, R ~) -~ X~ P~ 

where 

X ~  = XOR 2 + X1R3 + X2R o + X3R 1 

By Theorem 1 (Campbell and Dodson, 1976) we can use this definition to 
state the following: 

Definition 3. The Hermitian correlation o~r on PT is an inclusion reversing 
permutation of the proper subspaces of PTdefined by 

o~(PW) = {Zlh(Za, R a) = O, VRa E W} 

for proper subspaces IV C Y. 
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Now any correlation of a projective space interchanges points with hyper- 
planes (Yale, 1968, p. 258). The hyperplane Z C PT that is "conjugatd' to 
the point Z in this way is just 

= { X E P T I h ( X ~ , R  ~) = 0, VR~ = ~Za;3` E C -  {0)) 

We can now state the following. 

Definition 4. 

P N  - { Z  ~PTIZ ties on Z} 

Remarks 
(i) It follows from the previous equation for Z that Z lies on Z if and only 

ifh(Z ~, Z ~) = ZaZa = 0. So, N C T is the space of null twistors. 
(ii) Also, from the definition ofa  symplectic correlation (Yale, 1968, p. 266) 

the Hermitian correlation Yt~is symplectic on PN. 
(iii) PT can be decomposed further into 

Pl] -+ : {Z ~ PTIZ~Z~ > 0} 

P T  - = {Z e P~I Z~2~ < 0} 

with PN as common boundary. 
Penrose (1967) has established various relationships between PT and M and 

its complexification CM. Namely, 
(A) A one-to-one relation between null lines in M and points in PN. 
(B) A one-to-one relation between points in M and projective lines inPN. 
(C) Therefore, two points in M have null separation if and only if their 

corresponding projective lines in PN intersect. 
(13) Projective lines in PTthat  do not lie entirely in PN are in one-to-one 

correspondence with points in CM.  
Now, by using the above definitions we can establish the following. 

Proposition 2. A projective line P c PT defines a real point of CM if 
and only if P =o~ff(P). 

Proof. According to Definition 3, for a projective line 

P cPT,  ,,,f': pv--@ 

Here 

= ~ ( P )  = {points X @ Pl]- I h (X ~, R a) = 0, VR a = 3  ̀y~ + pZ a 
where 3,, #L are not both zero and twistors Ya, Z ~ 
define null lines meeting at the point P E M} 

By the dimension theorem for a correlation (Yale, 1958, p. 258)P is a projective 
line. 

Now, if P = P then every projective point Z lying on P also lies on its conjugate 
hyperplane Z, defined by ~ .  This follows from the principle o f  duality for pro- 
jective spaces (Yale, 1968, p. 256), which implies that Z lies on P if and only if 
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Plies on Z. Then, by Definition 4, P C CN and therefore by (B) above defines 
a point P E M. 

I f P  is a real point of CM, then P =/5 and both light cones are identified. We 
can therefore state the equation following: 

{points Y E P~  [h (Ya, S,~) = 0, VS a = XV '~ +/aU a, where X, ~t are not both 
zero and V a, U a define null lines meeting at the 
point/5 E M} 

= {points X E PTI h ( X  a, R a) = O, VR a = XV a 
+/aU ~ . . . P E M }  

In other words, 

~(P ' )  =jf'(P) 

o r  

P = P  13 

4. MinkowsM Space-Time and Lagrangian Subspaces o f  Txa-~ 

The results of Sections 2 and 3 contain two items of interest. 
(i) Points of M are in one-to-one correspondence with projective lines 

P C PTsuch that P =gf'(P). 
(ii) Lagrangian subspaces F x  ~ C T x ~ T  defined by polarizations F of 11- are 

interpreted projectively as projective lines P F x  '~ C P T x ~ T  such that P F x  ~ = 
~(PFx'~).  

We can expect that a map I :  PTx~'ff  ~ P3-exists, taking a line P F x  '~ to a 
line P C P~- which passes through the projective point X G P~-. If such an 
induced line P has the property that P = o~f(P) under the Hermitian correla- 
tion oaf on P-f, then it will define a point of M. For this to be so, then X must 
be contained in PN. 

This prompts the conjecture that the assignment of a field of  2-dimensional 
isotropic subspaces F x  'x C Txc~-~ to each X a E N C T determines a set of points 
in real Minkowski space-time. 

Support for this conjecture can be obtained from physical considerations: 
Points in Minkowski space-time are uniquely specified by the intersection of 
null geodesic congruences with vanishing shear and rotation (the light cones). 
Equivalently, by rotation-free null congruences normal to families of 2-spheres 
(Newman and Winicour, 1974). Now one entity that induces a measure of  the 
rotation of a null geodesic congruence in M is the symplectic structure on the 
cotangent bundle over M (Penrose, 1972, 1975). Crampin and Pirani (1971) 
have shown that this symplectic structure agrees with the symplectic structure 
on 7. 'We can therefore expect a Lagrangian subspace F x  ~ C Tx~T  to def'me 
the set of momentum directions of  a rotation-free null congruence in M. 

The vanishing shear property for a null congruence intersecting at a space- 
time point can be given a neat formulation in Pl/- by means of the Kerr theorem 
(Penrose, 1967). Essentially, a shear-free null congruence is representable in P-0- 
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by a submanifold S A PN, where S is a complex analytic surface in PT. It 
should be possible to determine the restrictions that this condition places on 
those projective lines in PN that are induced from the projective lines in 
PT.x-aT corresponding to the subspaces Fxa C Txa T. 

Using the Hermitian correlation ~ on PT we can, by means of Definition 3, 
construct a reciprocal S to S, which is essentially the set of hyperplanes 
"conjugate" to the projective points of S. It turns out that the shear-free null 
congruences in M that are also rotation-free everywhere are those that are 
representable by both SoP~J and SoPN.  

The above conjecture can now be rephrased in a more restrictive form: 
An assignment of a field of Lagrangian subspaces F x  ~ C TxaT to each X a E 
~d C T determines a set of real space-time points. This should be so when their 
projective counterparts PFx a correspofid to lines P C PT such that P _~ So 
and P c_ SoPN. 

It should be noted that a complete understanding of the significance of 
polarizing T requires consideration of the involutive condition of Definition 1. 

5. Changing the Field o f  Lagrangian Subspaces on T 

We discussed previously (Campbell and Dodson, 1976) the interpretation of 
r~onsingular maps among Lagrangian subspaces of R 2n in terms of  the action of  
the projective group PGI(2n;R)on R P  2n- I. Theorem 3 stated there will also 
be applicable to the complex case. So, nonsingular maps among Lagrangian 
subspaces W C C 2n are given by projective transformations in CP 2n- 1. Namely that 
those among the (n - 1)-dimensional hyperplanes P W C C p2n - 1 that have 
the property that PW~-qg(PW). 

In particular, for a polarization F of T we are interested in a projective 
interpretation for maps among Lagrangian subspaces F x  a C TxaT. These will 
obviously be given by the action of PGI(4;C) on PTxaT.  More specifically, by 
projective transformations among those projective lines PFx ~ C PTx'~T with 
the property PFx  ~ = ~(PFxa) .  

Consider a field of Lagrangian subspaces defined on T. By the conjecture in 
Section 4 we can now hope for a suitable interpretation of  maps among such 
fields in terms of sets of transformations on M. Indeed, it should be possible 
to determine the space-time transformations involved in each case by examin- 
ing the induced action on PT of the projective transformations among the 
PFx~. In fact, Penrose (1967) has discussed the correspondence between 
projective transformations and correlations of PTand transformations of M, 
CM, respectively. This can be summarized as follows: 

(i) Projective transformations of  PTthat  leave P~l invariant correspond to 
the conformal transformations of M "continuous with the identity". 

(ii) Projective transformations of  PT combined with a complex conjuga- 
tion operation correspond to space or time reflections on M. For space reflec- 
tions PT- is interchanged with ~ and for time reflections each is transformed 
into itself. 
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(iii) Correlations o f  PTcorrespond to transformations o f  CM, and in fact 
certain combinations o f  correlations of  P~-can result in the transformations 
of  (ii). 
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6. Concluding Remarks 

This paper has been concerned with the use o f  projective geometry for the 
characterization of  Lagrangian subspaces of  C 2n, maps among them being given 
by the projective group PGl(2n;C). 

In particular, we have discussed the possible consequences of  this approach 
for twistor space which is C 4. 

The previous work of  Penrose (1967) on the intimate relationship existing 
between projective twistor space and compactified Minkowski space-time was 
summarized and explicit definitions given for the entities used. This prompted 
some conjectures on a space-time interpretation for fields on T of  Lagrangian 
subspaces Fx  ~ C Tx~T and nonsingular maps among them. 

One final point of  interest: Penrose (1972, 1975) has argued that the con- 
formal curvature o f  space-time shows up classically in terms of  symplectic auto- 
morphisms of  twistor space that "shift" its complex structure. This results in 
a nonzero shear for the null geodesics of  the light cones after passage through 
a region of  curvature. However, the zero-rotation property remains invariant. 
Now it is known that the symplectic automorphisms that can arise on a symp- 
lectic manifold (for example by the induced action of  a change of  polarization) 
have a projective counterpart, in fact, as projective transformations commut- 
ing with a symplectic correlation. 
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